Best-First Inputs	F search problem $\langle X, S, G, \mathcal{T}, c \rangle$				
Output Initialize	(path to) goal node O = S is the list of open nodes				
while $(O is$	s not empty) do				
1. delete	node $n \in O \ s.t. \ e(n)$ is minimal				
2. if $n \in$	G, return (path to) n				
3. for all	$m \in \mathcal{T}(n)$				
(a) c	(a) compute $e(m)$				
(b) i	nsert m into O with priority $e(m)$				
fail					

Language Modelling

Standard Language Modelling selects "top-p" at each node (i.e., greedily selects the most likely next word)

Can we find a more likely continuation?

What is g(n) for every node? What order will best-g explore the maze?

		S		
G				

What is g(n) for every node? What order will best-g explore the maze?

3	2	1	S	1	2	3
4	5	6	7	6	5	4
G	10	9	8	7	6	5

If we use the Manhattan distance as h, What is h(n) for each node n? What order will best-h explore the maze?

If we use the Manhattan distance as h, What is h(n) for each node n? What order will best-h explore the maze?

2	3	4	S	6	7	8
1	2	3	4	5	6	7
G	1	2	3	4	5	6

		S		
G				

What is f(n) at each node n?

	3	2	1	S	1	2	3
-	4	5	6	7	6	5	4
	G	10	9	8	7	6	5
[2	3	4	S	6	7	8
		C	·		C		
	1	2	3	4	5	6	7
	G	1	2	3	4	5	6
ſ				_			
	5	5	5	S	7	9	11
	5	7	9	11	11	11	11
	G	11	11	11	11	11	11

f(n)

h(n)

g(n)

	5	S	7	
G				

	5	5	S	7	
G					

5	5	5	S	7	
G					

5	5	5	S	7	
5					
G					

What is f(n) at each node n?

Tie, either node can be expanded first

5	5	5	S	7	
5	7				
G					

5	5	5	S	7	
5	7	9			
G					

5	5	5	S	7	9	
5	7	9				
G						

5	5	5	S	7	9	
5	7	9	11			
G						

5	5	5	S	7	9	11
5	7	9	11			
G						

5	5	5	S	7	9	11
5	7	9	11	13		
G						

5	5	5	S	7	9	11
5	7	9	11	13		11
G						

5	5	5	S	7	9	11
5	7	9	11	13	11	11
G						

- Each node needs to keep track of its predecessor to reconstruct the path.
- You must also keep track of g(n) for each node.
- If n is multiple times and g(n) is lower than the first time, you must update g(n) and its predecessor)

5	5	5	S	7	9	11
5	7	9	11	11	11	11
G	11	11	11	11	11	11